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This paper describes a new numerical scheme for the approximation of steady state solu-
tions to systems of hyperbolic conservation laws. It generalises the fluctuation distribution
framework by allowing the underlying representation of the solution to be discontinuous.
This leads to edge-based fluctuations in addition to the standard cell-based fluctuations,
which are then distributed to the cell vertices in an upwind manner which retains the
properties of the continuous scheme (positivity, linearity preservation, conservation, com-
pactness and continuity). Numerical results are presented on unstructured triangular
meshes in two space dimensions for linear and nonlinear scalar equations as well as the
Euler equations of gasdynamics. The accuracy of the approximation in smooth regions of
the flow is shown to be very similar to the corresponding continuous scheme, but the dis-
continuous approach improves the sharpness with which discontinuities in the flow can be
captured and provides additional flexibility which will allow adaptive techniques to be
applied simply to improve efficiency.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The concept of fluctuation distribution was formalised 25 years ago [22] as a potential alternative to flux-based finite vol-
ume schemes for approximating hyperbolic conservation laws. It was built on previous work by Ni [17] and Sells [26], who
placed the emphasis on using differences between fluxes, rather than the fluxes themselves, to predict the evolution of the
flow. In one space dimension it was simple to reproduce the most valuable properties of the finite volume schemes, such as
upwinding, positivity and conservation, and the schemes developed were easily extended to nonlinear systems using exist-
ing techniques [21]. The advantages of the fluctuation distribution approach become more apparent when simulating mul-
tidimensional problems, where the framework is far better able to incorporate genuinely multidimensional physical
phenomena, avoiding the inherently one-dimensional concept of a Riemann solver which is typically retained when upwind
flux-based algorithms are extended to higher dimensions.

Since their inception, fluctuation distribution schemes have been developed which provided genuinely multidimensional
modelling which can achieve very high orders of accuracy without spurious oscillations for both steady state and time-
dependent scalar equations, along with generalisations to nonlinear systems of conservation laws. Details of both their foun-
dations and some of the most important recent developments can be found in the reviews presented in [2,29] and the
references therein. However, the work presented in this paper is primarily concerned with a new strand of research which
builds on the fundamental components of fluctuation distribution:
. All rights reserved.
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� an upwind scheme for simulating scalar advection (most naturally on unstructured meshes of simplices) which can also
cope with the presence of non-homogeneous terms [24,27];

� a conservative linearisation for nonlinear equations and systems (which is not essential but greatly aids in the retention of
desired properties when extending scalar schemes to nonlinear systems of equations) [10];

� a generalisation of the scalar scheme to systems of equations, typically carried out through either wave decomposition
models [16,18,25] or matrix distribution schemes [28]. The more recent developments in high order and time-dependent
schemes may be applied in the new framework, but this is the subject of future research and will only be discussed briefly
at the end of this paper.

The finite volume approach remains an extremely popular choice for simulating flows of realistic complexity, largely due
to its ability to provide plausible solutions in the most demanding of situations. Although fluctuation distribution does not
yet provide the same level of robustness, particularly in three dimensions, it has the advantage that when it does provide a
sensible solution, it is typically far more accurate, due to its more realistic representation of multidimensional flow physics.

More recently, the discontinuous Galerkin approach (see, for example [7,29] for an overview) has emerged as a strong
challenger to finite volumes. In fact it can be viewed as a generalisation of the finite volume framework which retains the
flux-based form at the mesh edges but also includes the effects of variations within each cell in the manner of a finite ele-
ment (or fluctuation distribution) scheme. Allowing the representation of the dependent variable to be discontinuous pro-
vides considerably more flexibility than continuous finite elements, especially in terms of applying upwinding and adaptive
techniques. Formulating the approach as a non-conforming finite element scheme facilitates formal analysis that is not avail-
able to the finite volume approach. The success of these schemes suggests that there are significant benefits to be found in
the combination of a discontinuous representation (for flexibility and shock capturing) with proper modelling of variations
within mesh cells (for accuracy). In fact, the discontinuous Galerkin scheme has already been reformulated as a fluctuation
distribution scheme [6], and then combined with a standard technique for obtaining high order accuracy from a first order
positive scheme. The work in this paper will present a different form of discontinuous scheme, derived purely from a fluc-
tuation distribution viewpoint.

Until now, fluctuation distribution has been based on a discrete solution that is constrained to be continuous over the
computational domain. The purpose of the research presented here is to relax this constraint and examine the possibility
of combining the fluctuation distribution approach with a discontinuous representation of the solution.

� The fluctuation distribution framework provides
– schemes which have been designed to retain at a discrete level the most important underlying physical processes,

retaining a genuinely multidimensional representation which flux-based schemes are not capable of;
– a framework in which it is simple to discretise source terms which represent processes having a natural balance with

the fluxes [19,23] and retain equilibria inherent in the underlying equations;
– genuinely multidimensional upwinding (and hence positivity).

� Allowing the scheme to use a discontinuous representation of the dependent variable provides, in addition,
– a framework within which h- and p-adaptivity can be carried out simply;
– a localised system which aids in the construction of high order schemes which are free of numerically induced

oscillations.
Instead of taking the discontinuous Galerkin approach, which uses numerical fluxes to deal with the discontinuous rep-
resentation, the new scheme retains the basic fluctuation distribution approach and applies it to additional, edge-based, fluc-
tuations which arise due to the discontinuities. These are calculated at each mesh edge and then distributed using
appropriate forms for the conservative linearisation, the decomposition of the linearised system and the distribution of
the scalar components.

This paper will describe discontinuous fluctuation distribution in detail, as it is applied to both scalar hyperbolic conser-
vation laws and nonlinear systems, on unstructured triangular meshes in two space dimensions. Only steady state solutions
and schemes based on a piecewise linear representation of the dependent variables will be considered. The most commonly
used continuous fluctuation distribution schemes, which will be used here in the discontinuous scheme to distribute the
contributions from the mesh cells, will be described in Sections 2 (scalar equations) and 3 (nonlinear systems of equations).
The extension to allow for discontinuities in the solution across cell edges will be described in Section 4. The method is then
applied to the scalar advection equation, a form of the inviscid Burgers’ equation and the Euler equations of gasdynamics in
Section 5, where results are provided for a range of two-dimensional test cases. The future development of the method is
discussed in Section 6.

2. Fluctuation distribution

Consider the scalar conservation law governing the evolution of an unknown quantity uð~x; tÞ and given by
ut þ ~r �~f ¼ 0 or ut þ~k � ~ru ¼ 0 ð1Þ
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on a domain X, with appropriate initial conditions and Dirichlet boundary conditions imposed on the inflow part of the
boundary oX. Here ~f represents the conservative flux vector and ~k ¼ o~f=ou defines the advection velocity associated with
the conservation law (1). This equation has an associated fluctuation which, for a triangular mesh cell D (for simplicity,
the two-dimensional case will be considered from now on), is given by
Fig. 1.
/ ¼ �
Z

D

~k � ~rudX ¼ �
Z

D

~r �~f dX ¼
I

oD

~f �~ndC ð2Þ
in which ~n represents the inward pointing unit normal to the cell boundary. When u is assumed to have a piecewise linear
continuous representation with values stored at the mesh nodes, the discrete counterpart of / is evaluated using an appro-
priate (conservative) linearisation [10,29]. Ideally, this allows the integration in Eq. (2) to be carried out exactly with respect
to the discrete representation of the flow variables, giving
/ ¼ �SD
e~k �g~ru ¼ �1

2

X
i2D

ui
~~k �~ni ¼ �

X
i2D

kiui; ð3Þ
where SD is the cell area and the symbol � indicates an appropriately linearised quantity. The index i loops over the vertices
of D and~ni is the inward unit normal to the ith edge (opposite the ith vertex, see the left hand side of Fig. 1) multiplied by the
length of that edge. The ki are defined by
ki ¼
1
2
e~k �~ni ð4Þ
and represent ‘‘inflow parameters” which indicate the direction of flow through a cell edge (ki > 0 represents inflow through
the edge opposite vertex i, while ki < 0 represents outflow). Note that a piecewise linear representation of the solution with-
in each mesh cell will be assumed throughout this work, with the extension to higher degree polynomials considered in fu-
ture research.

A simple forward Euler discretisation of the time derivative leads to an iterative update of the nodal solution values which
is generally written as
unþ1
i ¼ un

i þ
Dt
Si

X
j2[Di

aj
i/j; ð5Þ
where Dt is the time-step, Si is the area of the median dual cell surrounding node i (one-third of the total area of the triangles
with a vertex at i, see the right hand side of Fig. 1), aj

i is the distribution coefficient which indicates the appropriate propor-
tion of the fluctuation /j to be sent from cell j to node i, and [Di represents the set of cells with vertices at node i. The time
derivative term in this construction is included here purely as a device for iterating to the steady state.

The most useful fluctuation distribution schemes have been designed so that they satisfy a range of useful properties [29].
Positivity ensures that the numerical approximations are free of unphysical oscillations, which can appear in the vicinity

of sharp changes in the solution. This is simple to ensure when the underlying representation of the dependent variable is
piecewise linear, but becomes far more challenging when higher degree polynomials are considered [15].

Linearity preservation ensures that the distribution of a fluctuation evaluated exactly with respect to a (k � 1)th degree
polynomial representation of the flux will lead to a kth order accurate scheme [5]. It is assured as long as the distribution
coefficients aj

i are bounded.
Conservation ensures that discontinuities are captured correctly, and is assured as long as
X

i2Dj

aj
i ¼ 1 8j; ð6Þ
where Dj represents the set of nodes at the vertices of cell j, i.e. the whole of each fluctuation must be sent to the nodes.
Compactness aids the efficiency of the algorithm, especially when parallelisation is considered. For a piecewise linear

representation this simply restricts the schemes so that a cell’s fluctuation is only distributed to its own vertices.
Continuous dependence of the distribution coefficients a on both the dependent variable u and the advection velocity~k

helps to avoid limit cycles and facilitates smooth convergence to the steady state.
The geometry of an individual mesh cell and its edge normal (left) and the median dual cell (thick solid line) associated with a mesh node (right).
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Upwinding is typically introduced for physical realism but its underlying principle is that the discrete form should prop-
agate signals in the same direction and with the same speed as those which appear in the mathematical/physical model, and
this seems to facilitate the construction of positive schemes, provides rapid and smooth convergence to the steady state and
simplifies the imposition of boundary conditions.

Note that, in line with Godunov’s theorem, linear schemes of this form cannot be both positive and linearity preserving
[12].

This framework has led to a range of upwind schemes based on a continuous piecewise linear representation of the
dependent variable. The three most commonly used, which will be applied in this work, are as follows.

The N scheme is a linear scheme with all the desired properties except linearity preservation. There are many equivalent
ways to write down the distribution coefficients for this scheme but, for the purposes of the description here, they will be
defined by
ðaj
iÞ

N/j ¼ ð/j
iÞ

N ¼ kþi
X
l2Dj

k�l

0@ 1A�1X
l2Dj

k�l ðui � ulÞ; ð7Þ
where k�i ¼ 1
2 ðki � jkijÞ with the ki defined by (4). The distribution coefficients ðaj

iÞ
N can be derived easily from this. The N

scheme is guaranteed to be positive for a time-step of
Dt 6
SiP

j2[Di

ðkj
iÞ
þ 8nodes i: ð8Þ
The LDA scheme is a linear scheme with all the desired properties except positivity. The distribution coefficients can be
written as
ðaj
iÞ

LDA ¼ kþi
X
l2Dj

kþl

0@ 1A�1

: ð9Þ
The PSI scheme is a nonlinear scheme with all the desired properties. Its distribution coefficients are most easily defined
in terms of those of the linear schemes, either by limiting the distribution coefficients of the N scheme, using
ðaj
iÞ

PSI ¼ ½ðaj
iÞ

N�þP
l2Dj
½ðaj

lÞ
N �þ

; ð10Þ
or by writing it as a weighted combination of the N and LDA scheme coefficients. It is clear from (10) that ðaj
iÞ

PSI 2 ½0;1� and
simple to show that the scheme is positive, with a less strict time-step constraint than that of the N scheme. Its disadvan-
tages when compared to the linear schemes are the difficulty with which it can be generalised to nonlinear systems of equa-
tions and the slower convergence to the steady state it exhibits, even for linear, scalar systems [1].

Details of all of these schemes can be found in [2,12,29].

3. Nonlinear systems of equations

Consider the system of conservation laws given by
Ut þ ~r �~F ¼ 0 or Ut þ~A � ~rU ¼ 0 ð11Þ
with appropriate initial and boundary conditions on a domain X. U is now the vector of conserved variables,~F represents the
conservative fluxes and ~A contains the flux Jacobian matrices. The fluctuation associated with this system is given (cf. Eq. (2))
by
U ¼ �
Z

D

~A � ~rU dX ¼ �
Z

D

~r �~F dX ¼
I

oD

~F �~ndC ð12Þ
in which ~n is again the inward pointing unit normal.
It is important to be able to correctly approximate the position and strength of nonlinear discontinuities, such as shocks,

which can occur in solutions of nonlinear systems. Hence the scheme should be conservative, i.e. in the absence of internal
sources and sinks, the total change in the conserved variables should depend only on the flux through the boundary of the
domain. A fluctuation distribution scheme for the homogeneous equations (11) is conservative if the fluctuation on which it
is based (which must be fully distributed to the mesh nodes) satisfies
U ¼
I

oD

b~F �~ndC ð13Þ
for some continuous approximation b~F of the flux.
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For the system used in this work a conservative linearisation exists under the assumption that a particular set of variables
(known as the parameter vector variables, originally defined by Roe for his approximate Riemann solver [21]) vary linearly
within each mesh cell, and the discrete fluctuation can be written (cf. Eq. (3))
U ¼ �SD
e~A � g~rU ¼ �1

2

X
i2D

Ui
e~A �~ni ¼ �

X
i2D

KiUi; ð14Þ
where
Ki ¼
1
2
e~A �~ni; ð15Þ
in line with Eq. (4), and the symbol � indicates an appropriately linearised quantity.
The existence of a conservative linearisation is advantageous because it leads to a simple approximation of the flux Jac-

obians which provides a natural definition of the Ki parameters which are subsequently used to distribute the fluctuation.
Typically, a linearisation of this type leads to approximate Jacobians and gradients of the form
e~A ¼ o~F
oU
ðZÞ and g~rU ¼ oU

oZ
ðZÞ~rZ ð16Þ
for some piecewise linear set of parameter vector variables Z (and hence piecewise constant ~rZ). This greatly facilitates the
application of the fluctuation distribution approach to this system of equations, although it would still be possible (subject to
the loss of strict satisfaction of properties such as positivity) even if there was no conservative linearisation available [3,9].

In the case considered here Z in a mesh cell is simply the arithmetic mean of the values of Z at the cell vertices. The
construction of the conservative linearisation is also very simple in the scalar cases of divergence-free linear advection and
the inviscid Burgers’ equation (both used later in this paper), since z ¼ u provides an appropriate set of variables for the
averaging.

3.1. Wave decomposition models

One approach to carrying out the distribution of the fluctuation given in (14) is to attempt to decompose it into simpler
components which can each be distributed according to the schemes described in the Section 2. This can be done by attempt-
ing to diagonalise the system using a similarity transformation, i.e. writing
U ¼ �SD
eRf~A0 eR�1 � g~rU ; ð17Þ
where eR is chosen so that the component matrices off~A0 are diagonal. Unfortunately the component matrices of e~A are not, in
general, simultaneously diagonalisable so the resulting decomposition given by Eq. (17) actually takes the form
U ¼
XNw

l¼1

/l~rl where /l ¼ �SD
e~kl � g~rW l þ ~ql; ð18Þ
in which Nw is the number of components (or waves) in the decomposition (four for the two-dimensional Euler equations),~rl are
the columns of the matrix eR, Wl are the transformed (characteristic) variables, defined purely in terms of their gradients, i.e.
g~rW l ¼ eR�1 g~rU ; ð19Þ
e~kl are the wave speeds, given by the diagonal elements of f~A0 , and ~ql are derived from the remaining off-diagonal terms of f~A0 .
The /l all contain an advective term which can be distributed using any of the scalar schemes of Section 2 and the additional
~ql terms are dealt with by distributing the whole of each /l using the coefficients derived for the homogeneous equation [18].
The ~rl provide the projection of the resulting signals, sent by the scalar component to the cell vertices, back on to the con-
servative variables before they are used in the final update
Unþ1
i ¼ Un

i þ
Dt
Si

X
j2[Di

XNw

l¼1

ðaj
iÞ

l/l
j~r

l
j: ð20Þ
The most successful schemes developed incorporate a preconditioning matrix within eR which allows the system to be
decoupled in an optimal fashion [18]. In supercritical flow, where the steady state Euler equations are completely hyperbolic,
this leads to complete decoupling, but for subcritical flow only two components can be decoupled, leaving (in two dimen-
sions) a 2� 2 elliptic subsystem.

The results shown in this paper use the Elliptic–Hyperbolic decomposition of Roe and Mesaros [16,25], which applies the
PSI scheme to the decoupled components and a Lax–Wendroff-style distribution of the form (in two dimensions)
ðaj
iÞ

LW ¼ 1
3

Iþ Dt
4SDj

e~A �~nj
i ð21Þ
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to the elliptic subsystem in subcritical regions, i.e. a pair of waves from (20) are treated as a coupled subsystem instead of
considering the nonzero ~ql in (18) as source terms. The scheme is regularised through the critical point in the manner de-
scribed in [16], in which the preconditioning matrix depends on a function � of the local Mach number M. It is stated in
[16] that it should satisfy �ð0Þ ¼ 1

2 and �ð1Þ ¼ 1: in this work it is defined so that it approaches these values smoothly, i.e.
�0ð0Þ ¼ �0ð1Þ ¼ 0, leading to
�ðMÞ ¼ �M3 þ 3
2 M2 þ 1

2 for 0 6 M 6 1
1 for M > 1:

(
ð22Þ
3.2. Matrix distribution schemes

A more robust alternative to wave decomposition was developed to incorporate multidimensional upwinding within ma-
trix distribution coefficients [11,18,29]. Using Eq. (14), the two-dimensional fluctuation can be written as
U ¼ �
X
i2D

KiUi where Ki ¼
1
2
e~A �~ni: ð23Þ
Now, unlike e~A which had components which were not necessarily simultaneously diagonalisable, the Ki can easily be diag-
onalised for the Euler equations, so
Ki ¼fRi
fKi
fRi
�1 giving K�i ¼fRi

fKi
�fRi

�1 ð24Þ
in which fRi is the matrix of right eigenvectors of Ki and fKi
� ¼ 1

2 ðfKi � jfKi jÞ, jfKi j being the diagonal matrix of the absolute
values of the eigenvalues of Ki. In fact the K matrices take the form of the linearised flux Jacobians which occur in the stan-
dard multidimensional extension of Roe’s flux difference splitting [21].

The two linear scalar schemes described in Section 2 have simple matrix forms. The system N scheme is defined (cf. Eq.
(7)) by
ðUj
iÞ

N ¼ Kþi
X
l2Dj

K�l

0@ 1A�1X
l2Dj

K�l ðUi � UlÞ; ð25Þ
while the system LDA scheme is given (cf. Eq. (9)) by
ðUj
iÞ

LDA ¼ Kþi
X
l2Dj

Kþl

0@ 1A�1

U: ð26Þ
The nonlinear PSI scheme is more difficult to generalise to nonlinear systems of equations, since the N scheme does not have
explicit matrix coefficients. It is therefore not possible to carry out a ‘‘limiting” procedure of the form defined by (10). In-
stead, a blended scheme is typically used, i.e.
Ui
B ¼ lUN

i þ ð1� lÞULDA
i ; ð27Þ
where l is chosen so that (i) the LDA scheme dominates in smooth regions, (ii) the N scheme is applied near to discontinu-
ities, and (iii) the overall scheme is positive (or nearly so). In this work the very simple form given by
l ¼ jUj
jUN

1 j þ jUN
2 j þ jUN

3 j
ð28Þ
is chosen, following the work of [14], though more sophisticated options are available [2].
The overall update of the matrix distribution schemes takes the form
Unþ1
i ¼ Un

i þ
Dt
Si

X
j2[Di

Uj
i: ð29Þ
4. A discontinuous scheme

4.1. Scalar conservation laws

A continuous representation of u was assumed throughout the discussion in Section 2. In that case, the integral of the
scalar conservation law (1) over X was divided between the mesh cells, leading to the fluctuations (2)/(3) which were used
to update u, via (5), in a conservative manner.
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If the discrete representation of u is allowed to be discontinuous across the mesh edges then the integral of the flux diver-
gence over the whole domain includes terms arising from these discontinuities, i.e.
Z

X

~r �~f dX ¼
XNc

j¼1

Z
Dj

~r �~f dXþ
XNe

j¼1

Z
jj

~r �~f dX; ð30Þ
in which j is used to represent a mesh edge (face in three dimensions) and Nc , Ne are the numbers of cells and edges, respec-
tively. Each edge can be thought of as the limit of a rectangle as its width tends to zero, as illustrated on the left hand side of
Fig. 2, which leads to an expression for the fluctuation associated with a mesh edge:
w ¼ � lim
�!0

Z
��

~r �~f dX ¼ lim
�!0

I
o��

~f �~ndC ¼
Z
j
½~f �~n�dC; ð31Þ
in which [] represents the jump in a quantity across the edge, the sign of the difference being dictated by the direction cho-
sen for~n. This is simply the integral along the cell edge (in three dimensions this would be the integral over the cell face) of
the flux difference across it. Under the assumption that a conservative linearisation exists for the flux difference [21], the
edge-based fluctuation given in (31) can be evaluated exactly, giving
w ¼ �
XNq

l¼1

wl
e~kl �~n½ul�; ð32Þ
in which Nq is the number of quadrature points used in integrating (31), wl are the quadrature weights and ~~kl ¼ o~f ð~ulÞ=ou (~ul

being a conservative average of the two values for u at the specified quadrature point). The direction of~n indicated in Fig. 2 is
consistent with the jump in the solution being given by ½u� ¼ uright � uleft . For all of the equations considered in this work, and
given that it has been assumed here that the parameter vector variables vary linearly within each mesh cell (and hence along
each mesh edge), Simpson’s rule is accurate enough to integrate (31) exactly. Although it is not essential to make use of this
linearisation, doing so fits naturally with the existing framework, especially the extension to systems of equations, and
makes it simpler to demonstrate the satisfaction of properties such as positivity.

In order to ensure that these edge fluctuations can be used as part of a positive scheme, (32) is rewritten (using the num-
bering indicated on the left of Fig. 2) as
w ¼ 1
2
b~k12 �~nðu1 � u2Þ þ

1
2
b~k43 �~nðu4 � u3Þ: ð33Þ
The ~̂k are conservatively averaged values, but they are not defined as they would be within each mesh cell and therefore dif-
fer from ~~k. Instead they are defined here to be
b~k12 ¼
1
3

~k1 þ~k2 þ
~k3 þ~k4

2

 !
;

b~k43 ¼
1
3

~k3 þ~k4 þ
~k1 þ~k2

2

 !
: ð34Þ
Note that the decomposition given in (34) is not unique. In fact the existence of a conservative linearisation within any
triangular cell means that an equivalent expression can be derived by considering w to be the sum of fluctuations over two
degenerate triangular cells. In the notation of Fig. 2 these triangles could be chosen to be either D123 and D134, which give
b~k12 ¼
1
3
ð~k1 þ~k2 þ~k3Þ and b~k43 ¼

1
3
ð~k1 þ~k3 þ~k4Þ; ð35Þ
or D124 and D234, which give
b~k12 ¼
1
3
ð~k1 þ~k2 þ~k4Þ and b~k43 ¼

1
3
ð~k2 þ~k3 þ~k4Þ: ð36Þ
Fig. 2. The mesh structure for the discontinuous fluctuation distribution at an edge (left) and around a node (right).
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In this work, the symmetric definition given by (34) is used, which is simply the average of the two situations given above.
Each formulation leads to the same value for the edge fluctuation w in (33), they only differ in the precise form of the result-
ing distribution coefficients.

The fluctuation w in (33) can now be distributed to the four cell vertices (two pairs of coincident vertices) associated with
the edge, and the form shown in (33) indicates clearly how it can be distributed in a positive manner according to the direc-
tion of the local linearised advection velocity, i.e. for a single edge, ignoring any contributions from other cells or edges,
S1

3
u1 !

S1

3
u1 þ

Dt
2
½ b~k12 �~n��ðu1 � u2Þ ¼

S1

3
u1 þ Dta1w;

S2

3
u2 !

S2

3
u2 þ

Dt
2
½ b~k12 �~n�þðu1 � u2Þ ¼

S2

3
u2 þ Dta2w;

S3

3
u3 !

S3

3
u3 þ

Dt
2
½ b~k43 �~n�þðu4 � u3Þ ¼

S3

3
u3 þ Dta3w;

S4

3
u4 !

S4

3
u4 þ

Dt
2
½ b~k43 �~n��ðu4 � u3Þ ¼

S4

3
u4 þ Dta4w;

ð37Þ
where ½ �� signifies the positive/negative part of the quantity and Sl (l ¼ 1;2;3;4) is the area of the mesh cell whose vertex is
being updated. It is easy to see that a1 þ a2 þ a3 þ a4 ¼ 1, so the distribution is conservative. It is also continuous, compact
and upwind, closely resembling the standard first order upwind scheme, except that the pairs of nodes ð1;2Þ and ð3;4Þ are
coincident. However, it should be noted that one important property is lost completely: while the schemes mentioned in
Section 2 all drop to first order accuracy for time-dependent problems, this scheme is not time-accurate at all.

Each mesh node now corresponds to many cell vertices and multiple values of u. When the new edge-based fluctuations
are distributed along with the original cell-based fluctuations each uj

i (the value associated with vertex i of cell j) can receive
contributions from precisely one cell and two edges (subject to the application of boundary conditions), leading to the
update
ðuj
iÞ

nþ1 ¼ ðuj
iÞ

n þ 3Dt
Sj
ðaj

i/j þ ak1
i wk1

þ ak2
i wk2

Þ; ð38Þ
in which the indices follow the annotation shown on the right hand side of Fig. 2 and Sj is the area of cell j. The distribution
coefficients for the edge fluctuations can be found easily from (33) and (37). Note that it is easy to show that the contribution
due to the degenerate polygon which appears at each mesh node (see the centre of the right hand diagram in Fig. 2) is zero.

It should be noted that applying (37), or an appropriate higher order version, to any continuous polynomial steady state
leads to zero contributions from the edges, since u1 ¼ u2 and u3 ¼ u4. Therefore, any continuous steady state will always be
preserved by this distribution of the edge-based fluctuations, so the overall order of accuracy is governed by the cell-based
fluctuation distribution scheme chosen. This leads to the following:

Proposition (Linearity Preservation). The discontinuous fluctuation distribution scheme defined by (38) is linearity preserving as
long as the continuous fluctuation distribution scheme defined by (5) with the same cell-based distribution coefficients aj

i has this
property.

It is possible to modify the edge distribution given by (37) by applying precisely the technique presented in (10) which
creates bounded distribution coefficients from ones which give a positive scheme (and was used to impose linearity preser-
vation on the distribution of the cell-based fluctuation), i.e.
ai !
ðaiÞþP
l2Dj
ðalÞþ

: ð39Þ
However, the above proposition suggests that this is not necessary and, in practice, applying (39) has little effect on the
numerical results.

The overall discontinuous fluctuation distribution scheme, as defined by the iteration in (38) is conservative, positive for
an appropriate limit on Dt, given by
Dt 6
Sj=3P

l2Dj
ðkj

lÞ
þ 8 cells j; ð40Þ
linearity preserving, compact, upwind and continuous (when the underlying cell- and edge-based distributions are).
The use of flux differences rather than fluxes when dealing with a discontinuity in the discrete representation of the solu-

tion is useful because it does not require the definition of any form of averaged ‘‘numerical” flux at the discontinuity. It also
accounts for the full variation of the solution along the edge, instead of assuming that all of the activity occurs at its mid-
point, and allows for a natural treatment of source/balance terms. On the other hand, when fluxes are used, the existence
of a conservative linearisation which facilitates conservation is significantly less important, which simplifies the implemen-
tation of h- and p-adaptivity.
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4.2. Nonlinear systems of equations

The extension to nonlinear systems of equations of the form given in (11) is straightforward, assuming that a conservative
linearisation exists [10,21] and that the resulting set of parameter vector variables vary linearly within each mesh cell. The
cell fluctuations can still be treated in the manner described in Section 3, but the edge fluctuations (31) are now given by
Fig. 3.
scheme
W ¼
Z
j
½~F �~n�dC: ð41Þ
Given that the linearisation is constructed under the assumption of the linear variation of a set of parameter vector variables,
and that F is quadratic in these variables, it is again enough to use Simpson’s rule to carry out the integration exactly. Using
the numbering system illustrated in Fig. 2, the edge fluctuation (33) can be written (cf. Eq. (16))
W ¼ 1
2
b~A12 �~nðU1 � U2Þ þ

1
2
b~A43 �~nðU4 � U3Þ; ð42Þ
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Circular advection of a square wave profile over an unstructured 3806 node, 7370 cell mesh using continuous (top) and discontinuous (bottom) PSI
s.



�0FigR–2.6�2.2�1�1�1�3�2�10LOG(CDiscontinuous CDiscontinuous �2.6�2.2�1�1�1�3�2�10LOG(CDiscontinuous CDiscontinuous Fig. 5.EliTAwFSD11111110
in which b~A ¼ ~AðbZÞ and the differences across the edge, dDU :¼ oU
oZ ðbZÞDZ (cf. Eq. (16)), are defined using averages of the param-

eter vector variables [21] analogous to those shown for scalar advection in (34), i.e.
0

0.

0.

0.

0.

0.

0.

0.

0.

0.

1

rnacU
bZ12 ¼
1
3

Z1 þ Z2 þ
Z3 þ Z4

2

� �
;

bZ43 ¼
1
3

Z3 þ Z4 þ
Z1 þ Z2

2

� �
:

ð43Þ
The W could easily be distributed directly (using a central scheme, for example) but to retain the positivity of the scalar
schemes they are here decomposed using Roe’s flux difference splitting [21], via the diagonalisation of the Jacobian matrices
in (42) given by
b~A �~n ¼ bR bKbR�1: ð44Þ
Upwinding (and hence positivity) is imposed using the wave velocities which appear in the diagonal eigenvalue matrix bK.
This allows each of the two components of the edge fluctuation (42) to take the form
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